
Keynote Address: .QL for Source Code Analysis

Oege de Moor, Mathieu Verbaere, Elnar Hajiyev,
Pavel Avgustinov, Torbjörn Ekman, Neil Ongkingco, Damien Sereni, Julian Tibble

Semmle Limited
Magdalen Centre, Oxford Science Park

Robert Robinson Avenue, Oxford OX4 4GA, UK
{oege,mathieu,elnar,pavel,torbjorn,neil,damien,julian}@semmle.com

Abstract

Many tasks in source code analysis can be viewed as
evaluating queries over a relational representation of the
code. Here we present an object-oriented query language,
named .QL, and demonstrate its use for general naviga-
tion, bug finding and enforcing coding conventions. We
then focus on the particular problem of specifying metrics
as queries.

1. Introduction

Source code analysis involves answering questions about
source, and indeed many researchers have taken that as the
starting point for phrasing analyses as queries over a rela-
tional representation of the code. In this paper, we pick up
that theme, and we present .QL, a general-purpose query
language that is particularly suited to expressing analysis
tasks.

The design of .QL is the result of combining ideas from
different areas of computer science:

SQL First, .QL is a query language, and we have made it
similar to SQL, in an attempt to lower the barrier for
developers to learn it. The similarity is however purely
syntactic, as the semantic basis is quite different.

Datalog Second, .QL is based on Datalog, a very simple
form of logic programming that has an elegant least-
fixpoint semantics. Datalog queries can be recursive,
and that is important for queries over the inheritance
hierarchy or the call graph. Datalog originated in
database theory [11], and it has been proposed as a
basis for program analysis several times, in particular
by Tom Reps [27] and more recently by John Whaley
et al. [18, 34].

Eindhoven Quantifier Notation Third, for program anal-
ysis it is often necessary to compute some metric prop-

erty. The way such metric computations would be
expressed in SQL is painful, involving complex con-
structs such as group-by that are only mastered by
experts. The Eindhoven school of Edsger W. Dijk-
stra [9, 16] have proposed an elegant notation to ex-
press these quantifications, but for a different purpose,
namely reasoning by fountain pen on paper. .QL is the
first query language to adopt the Eindhoven Quantifier
Notation as syntax in executable scripts. Later on in
this paper, we shall see this notation at work in defin-
ing various metrics computations.

Classes are Predicates Fourth, object-orientation is cru-
cial for writing reusable queries that can be shipped
in libraries. The question, then, is what semantic
model to adopt for an object-oriented query language.
.QL takes a disarmingly simple and consistent view,
namely that classes are predicates, and inheritance is
implication. This has the advantage of simplicity, but
the rigorous application of these principles leads to
consequences that may seem at first surprising, in par-
ticular the need for nondeterministic expressions. Ad-
mitting nondeterministic expressions does, however,
enable far more concise queries, and thus a better lan-
guage design.

.QL has an industrial-strength implementation, Semmle-
Code, which includes an editor with autocompletion and
online error checking, as well as a large number of opti-
misations. Those optimisations are essential, as a naive im-
plementation makes most queries intractable. This paper,
however, focuses solely on the language design.

The remainder of the paper is structured as follows. First,
we give a general introduction to the .QL language, sur-
veying its most salient features. Next, we zoom in on the
particular application of computing software metrics, and
we demonstrate how even quite complex metrics defini-
tions can be concisely expressed. Finally, we discuss related
work and conclude.

2. Introducing .QL by Example

Our introduction to .QL will involve queries over the
codebase of abc, an extensible AspectJ compiler [4]. The
code queried includes that of abc itself, plus the Polyglot
framework for extensible Java compilers [26], and the Soot
framework for bytecode analysis [32]. In all, the source in-
volves 572,689 lines of source code (including comments),
and 3974 reference types. By default, all the program ele-
ments in libraries that are directly referred to in source are
loaded as well, adding another 318 types. Below we refer to
the complete working set of source plus these library types
as abcplus.

2.1. Select statements

Suppose we wish to locate all classes that declare a
method named equals, but which do not declare a method
named hashCode. Often that is a bug: when defining a new
notion of equality, the hash function must be accordingly
modified. The following query constructs a new relation,
where each tuple consists of the package containing an er-
roneous class c, and that erroneous class c itself:

from Class c
where c.declaresMethod(”equals”) and

not(c .declaresMethod(”hashCode”)) and
c.fromSource()

select c.getPackage (), c

Note that this appears quite similar to an SQL select state-
ment. However, the order of the components is different: in
.QL, variables are declared before they are used. Apart from
increased readability, it also enables better editor support, in
particular for autocompletion.

Most users of .QL will start by writing select statements
such as these. The .QL implementation provides a variety
of ways of viewing results, including as a tree (for each
package, show the classes found) and as a table (with two
columns). Queries with an appropriate return type can also
be viewed as charts or graphs.

The above query returns 28 results on abcplus. In fact,
there are 2 classes in abc itself that violate the above design
rule. Checking such design rules that are not enforceable
by the Java type system is one of the prime applications of
.QL.

2.2. Predicates

Queries can be named and parameterised by wrapping
them in predicates. To illustrate, we construct a graph of all
the types in between two given types in abcplus. First, we
define a test to check that there exists a path in the hierarchy
from down, through between to up:

predicate between(RefType down, RefType between,
RefType up) {

down.hasSupertype∗(between) and
between.hasSupertype∗(up)

}

Here t1.hasSupertype(t2) is a test whether t1 has imme-
diate supertype t2. The use of the star in the expression
t1.hasSupertype∗(t2) indicates indirection: there exists a
chain (possibly of length zero) of supertypes from t1 to t2.

This predicate can now be used in another query to find
all paths from abc.aspectj.ast.AdviceDecl c (representing
advice declarations) to polyglot.ast.Node:

from RefType c1, RefType c2,
RefType node, RefType adviceDecl

where
node.hasQualifiedName (”polyglot . ast”,”Node”) and
adviceDecl .hasQualifiedName

(”abc. aspectj . ast”,”AdviceDecl c”) and
between(adviceDecl,c1,node) and
between(adviceDecl,c2,node) and
c2.hasSupertype(c1)

select c1,c2

In words, we first find the elements on paths from
AdviceDecl c to Node, and then we arrange them as edges.

Results of queries such as these can be viewed as graphs,
and that view of the result is depicted in Figure 1. Note how
in the Polyglot framework, every class has a corresponding
interface; this is one of the means by which Polyglot ensures
extensibility of compilers.

Figure 1. Paths from Node to AdviceDecl c in
the type hierarchy

2.3. Aggregates

Often we wish to compute some measure of a set of re-
sults: the sum, the size, or the average. In SQL, writing
such queries can be rather painful, due to the need to use
features like group-by, or complex nested SQL statements.

There is a very elegant notation for reasoning about
such aggregates in the work of Edsger W. Dijkstra and his
coworkers [9, 16], known as the Eindhoven Quantifier No-
tation. Their purpose was to use this notation in reasoning
about programs, and they showed many convincing exam-
ples of how it enables concise proofs. Here we deploy the
same idea directly as a query language construct.

To illustrate, here is a query for counting the number of
lines in the ast package of abc:

from Package p
where p.hasName(”abc.aspectj. ast”)
select sum(CompilationUnit cu |

cu.getPackage()=p |
cu.getNumberOfLines())

The general form of an aggregate in .QL is

aggfunc(localvars | condition | term)

Here aggfunc denotes any aggregate function, localvars are
declarations of local variables, condition restricts the values
that the local variables might take, and term is the value we
are aggregating. Apart from sum, other aggregate functions
in .QL are count (for counting the number of results), avg
(for computing the average), min (for computing the min-
imum) and max (for computing the maximum). Note the
pleasing analogy between from-where-select and the syntax
for aggregates.

2.4. Classes

As we have seen, predicates can be named, and that gives
some degree of reusability. However, a more powerful ab-
straction mechanism is needed, and therefore .QL is object-
oriented: you can define your own classes, use overriding,
and so on.

We illustrate these features with a coding convention that
is specific to Polyglot. Whenever a new AST node class is
defined, and it is not a terminal (so it can have children),
then it must override the visitChildren method. To express
that in .QL, we first define a class for AST types:

class ASTType extends RefType {
ASTType() {

exists (RefType n |
n.hasQualifiedName(”polyglot . ast”,”Node”) and
this .hasSupertype+(n))

}

Field getAChild() {
result =this . getAField () and
result .getType() instanceof ASTType

}
}

In words, an ASTType is a special kind of RefType. The
constructor states the defining property of ASTType, namely
that polyglot.ast.Node is a supertype of this. Indeed, in
general a class in .QL should be thought of as a logical
property; that characteristic predicate is the conjunction of
the property in the constructor and the characteristic predi-
cates of the superclasses. Next, we define a method named
getAChild. Its result is a field of this, which has a type that
is an ASTType. More generally, the body of a method is a
relation between its parameters, and two special variables
named this and result; void methods which do not return a
result are called predicates, and do not mention result.

All the methods that we used in previous examples were
defined in similar class definitions. They are not primitives
of the .QL language, and indeed there is nothing in .QL that
is specific to the application of querying source code.

We can use the above definition of ASTType to find vio-
lations of the Polyglot rule that all AST nodes that have a
child must implement visitChildren:

from ASTType t
where not(t .declaresMethod(” visitChildren ”)
select t .getPackage (), t , t .getAChild()

Interestingly, there are actually quite a few violations in
abcplus, all outside Polyglot — the designers of Polyglot do
as they say, but Polyglot’s users make mistakes in using its
API. The big advantage of phrasing the coding convention
as a query in .QL is that it is easy for Polyglot users to check
that they adhere to the rule.

2.4.1. Nondeterminism in Expressions

Methods in .QL should be thought of as nondeterministic
mappings. In the above example it is perfectly possible for
an ASTType to have multiple children, and then getAChild()
nondeterministically returns each of them, in an unspecified
order.

Concretely, this means that there is no need for the spe-
cial variable result to be assigned a unique value. The fol-
lowing predicate is perfectly well-defined:

int twoOrThree() { result =2 or result =3 }

In what follows, assume the above predicate is defined
in a class named Int. When such a nondeterministic method
is used in a condition, as below, the result acts like a local
variable (in an exists clause): some result of i.twoOrThree()
is equal to 3, and so the query succeeds.

from Int i
where i . twoOrThree() = 3
select ”succeed”

By contrast, under a negation the scope of that implicit
existential quantifier is inside the not, so the following query
fails:

from Int i
where not(i . twoOrThree() = 3)
select ”succeed”

To get the effect of testing for the existence of a result
that is not equal to 3, write:

from Int i
where exists (int x | x=i . twoOrThree() and not(x=3))
select ”succeed”

At first such nondeterminism may appear odd, but in a
query language it is a natural consequence of having both
expressions (including virtual method calls) as well as dis-
junction. Furthermore, the use of such nondeterministic
mappings avoids the proliferation of named variables that
plagues traditional logic programming.

2.4.2. Method Dispatch

Methods can be overridden. To illustrate, let us consider
the way query results are displayed in SemmleCode. Every
kind of program element defines a method named getIcon-
Path that returns the path where the relevant icon can be
found. So if we wish to display classes that are ASTTypes
differently from ordinary instances of Class, all we need to
do is override the getIconPath method:

class ASTClass extends ASTType,Class {
string getIconPath () {

result = ”icons/ treequery .png”
}

}

Note the use of multiple inheritance: we define a new class
that extends not only ASTType, but also Class. Figure 2
shows the result of querying for the RefTypes that depend
on a particular class in abc (see Section 3.1 for a precise
definition of this notion); note that some of the results are
ASTTypes, and correspondingly use a different icon.

In general, consider a method call e.foo(), where the
static type of e is C. In the last select statement of sub-
section 2.4, the static type of the receiver t is ASTType.

We wish to determine what method(s) are actually in-
voked by such a call. The first step is to find the root defi-
nitions of foo() (a root definition is a definition of foo() in
some supertype of C that does not itself override another

Figure 2. Query results with some ASTTypes

definition of foo()). In the above example, the single root
definition of getIconPath is in Element. Any definition of
foo() that overrides a root definition (i.e. is defined in a
subclass of a class with a root definition) is a candidate for
execution at the call site e.foo().

In the example, that implies all definitions of getIconPath
anywhere in the library are taken into account. Among these
candidates, a method definition in a class D is applied if
and only if the value of e satisfies the defining predicate of
D, and there is no subtype of D for which e also satisfies
the characteristic predicate. In our example, all classes that
are ASTTypes will be displayed with the tree icon, but other
classes are displayed with the normal class icon as before
(as we saw in Figure 2).

The process of call resolution thus consists of two steps,
one static and one dynamic. In the static step, we find the
root definitions and hence all the candidate definitions in
subtypes of those roots. For each candidate, we dynami-
cally test whether it is most specific. It may happen that
there are two most specific methods applicable: the choice
between them is then made nondeterministically (i.e. each
possibility is tried in turn).

2.5. Generic Queries

The big advantage of object-orientation in .QL turns out
to be the ability to create generic queries, distributed as li-
braries, that can be instantiated quickly and easily to partic-
ular code bases.

As an example, consider the Factory pattern, which
postulates that all elements of a particular kind should be
constructed in a special factory class — this allows for
greater flexibility. Indeed, it occurs in the Polyglot frame-
work, where all ASTTypes (cf. Section 2.4) must be created

through ASTNodeFactory instances, and ignoring this API
contract will break the built-in extensibility mechanisms.
Like the earlier rule for visitChildren, this is a coding con-
vention that is particular to Polyglot.

Let us first define a generic version of the concern: a
class to represent some factory, with methods to detect vio-
lations of the pattern.

class Factory {
Factory () { this=”factory” }
string toString () {result=”factory”}
predicate factory (RefType t) {any()}
predicate product (RefType t) {any()}
ConstructorCall getAViolation () {

this . product (result .getType ()) and
not(this . factory (result . getCaller ().

getDeclaringType ())) and
not(result instanceof SuperConstructorCall

or result instanceof ThisConstructorCall)
}

}

In words, a Factory is just a singleton value (arbitrar-
ily chosen to be the string “Factory”), which provides some
additional built-in logic. The two predicates factory() and
product() use the special predicate any(), which marks
them as abstract; subclasses can override them to provide
concrete definitions. The idea is that factory(t) holds when
t is a factory type, and product(t) holds if t is a type that
should only be produced in the factory.

The meat of the definition is in the getAViolation method,
which picks out constructor calls that manufacture a prod-
uct, that occur outside a factory, and that are not super- or
this-constructor calls.

All this work only has to be done once, for the library
queries. To actually use it, we simply need to instantiate the
generic .QL class to our particular application, ASTNode-
Factory in Polyglot:

class ASTNodeFactory extends Factory {
predicate factory (RefType t) {

t .getASupertype+().hasQualifiedName(
”polyglot . ast”, ”NodeFactory”)

}

predicate product (RefType t) {
t instanceof ASTType

}
}

Note that we use our definition of ASTType to pick out
things that should be factory products; a factory is just a
subtype of the appropriate class in Polyglot.

To find violations, we can now write the following query:

from ASTNodeFactory f
select f . getAViolation (), ”This constructor call ” +

”should be a factory method call!”

Since here we select pairs of program elements and
strings, SemmleCode allows us to visualise the results as
warnings in the Eclipse IDE: the relevant code locations are
marked with the message provided, and can be inspected.
It turns out that there are seven violations of the Factory
pattern in abc, all of which are potential extensibility bugs.
Again, Polyglot’s designers conform to their own API con-
tracts. Distributing the above .QL snippet with Polyglot
would allow end-users to check their own conformance.

3. Metrics

We now illustrate the use of .QL in a particular applica-
tion area, namely computing software metrics. Often met-
rics are defined only in an informal style, with many details
left unspecified. By contrast, the expression of a metric in
.QL can serve as a fully formal specification, which is fur-
thermore executable. The object-oriented features of .QL
come in handy in coding up variations that are often found
in the literature, and also in tailoring metrics to a particular
project or framework.

3.1. Dependency between types

Many metrics use a notion of dependency between types;
in turn that notion is used to define dependency between
packages, and so on. One type s is dependent on another
type t if s somehow refers to t. Such a reference can take
many different forms. More precisely: s depends on t if

• s is a direct subtype of (implements or extends) t

• s declares a field of type t

• s declares a method or constructor that

– has t as its return type

– has a parameter of type t

– throws an exception of type t

– calls a method or constructor declared in t

– accesses a field declared in t

So far, so good: the above list of requirements is easily
translated to .QL. However, there are some subtleties re-
lated to the use of generic types in Java. The precise details
go beyond the scope of this paper; the interested reader is
referred to [29], where the full definition of the predicate
usesType(t1, t2) is given. This holds when t1 = t2 or t2 is

somehow used to define t1, e.g. as a type parameter to a
generic type or the element type of an array type.

With the definition of usesType in hand, we can define
the depends relation itself as follows:

predicate depends(RefType s, RefType t) {
not isParameterized (s) and
not isRaw(s) and
(

usesType(s .getASupertype (), t) or
usesType(s . getAField (). getType (), t) or

...)

There are in fact five more disjuncts for different ways in
which type t may occur in type s.

3.2. Coupling metrics between types

To measure all the incoming dependencies of a type, we
can define a new method on reference types:

int getAfferentCoupling () {
result = count(RefType t | depends(t , this))

}

This metric gives some indication of the number of respon-
sibilities of a type, and therefore of the amount of effort that
might be involved in changing it. Figure 3 shows a graph of
most strongly coupled classes in our working set abcplus.
Unsurprisingly, the top scorer for this metric is the Position
class, which records locations in the source and is used very
extensively. Other heavily used classes are also on that list.

3.3. Coupling between packages

It is easy to lift the notion of dependency between types
to dependency between packages: a package p depends on
a package q precisely when p contains some type s that de-
pends on a type t in q. In this case we define a new class
named MetricPackage especially for metrics on packages.
One of its methods returns all the packages (other than it-
self) that this package depends on:

MetricPackage getADependency() {
exists (RefType t |
depends(this .getARefType(), t) and
result = t .getPackage ()) and
result != this

}

It is often said that cycles in the package dependence
graph are an indication of bad design [17, 24], so let us
write a query to identify such cycles. First, we shall restrict
ourselves to cycles through source files, leaving libraries

out of the equation, since we cannot account for their de-
sign. Method getASrcDep simply restricts getADependency
to types that occur in the source:

MetricPackage getASrcDep() {
result = this .getADependency() and
result . fromSource() and
this . fromSource()

}

Now, to identify members of a cycle, we define the follow-
ing nondeterministic method. It returns any package that
occurs in the same strongly connected component of the de-
pendency graph as this:

MetricPackage getACycleMember() {
result .getASrcDep∗() = this and
this .getASrcDep∗() = result and
result . fromSource()

}

Here the ∗ operator denotes zero or more applications of the
same operation: it is the reflexive transitive closure.

Having defined the notion of dependency cycles, our
next job is to decide how such cycles might be reported.
Clearly it would be handy to know their size, and that is
done by the simple definition

int getCycleSize () {
result = count(this .getACycleMember())

}

To report the cycle itself, we need to be able to pick a repre-
sentative member. In the absence of any other criterion, we
just take the minimum in dictionary order:

predicate isRepresentative () {
this .getName() =

min(MetricPackage p |
p = this .getACycleMember() |
p.getName())

}

Now we are ready to put it all together. The following query
reports all cycles in the source:

from MetricPackage p
where p.getCycleSize () > 1 and p. isRepresentative ()
select ”SCC of size ” +

p. getCycleSize (). toString () +
” for ” + p.getName() as s ,

p.getACycleMember()
order by s desc

In abcplus, there is a large number of such cyclic package
dependencies. On close inspection, many of them are quite
innocuous, being quite small and confined to one particular

Figure 3. Classes with highest afferent coupling in abcplus

project where the different packages are indeed closely re-
lated. However, there is a very large cycle in Soot (of size
84), resulting from its use of a root package named soot
that many other packages cyclically depend on. The query
thus correctly draws our attention to that design flaw, and
it would be better to refactor Soot to avoid all these cycles
that meet at the root package.

3.4. Lack of Cohesion in Methods

We now move on to a different type of metric, namely
to measure lack of cohesion. The idea is that in a well-
designed class, most methods access the same data. While
the basic intuition is simple, the precise way to measure
this property has been the subject of intense debate. Be-
low we present two different proposals, one due to Shyam
Chidamber and Chris Kemerer, and another due to Brian
Henderson-Sellers. Interesting evaluations of some of these
metrics can be found in [5, 8, 30]. Our aim, however, is
not to decide what metric is best: all we wish to do is to
demonstrate the power of .QL in experimenting with vari-
ous definitions.

3.4.1. Chidamber and Kemerer

The Chidamber and Kemerer metric inspects pairs of meth-
ods [7]. If there are many pairs that access the same data,
then the class is cohesive. On the other hand, if there are
many pairs that do not access any common data, then the
class is not cohesive. Cohesion is measured as follows:

• n1 = number of pairs of distinct methods in a reference
type that do not have at least one commonly accessed
field

• n2 = number of pairs of distinct methods in a reference
type that do have at least one commonly accessed field

• LCOM = ((n1 − n2)/2 max 0). We divide by 2 be-
cause each ordered pair (m1, m2) is counted twice in
n1 and n2.

High values of LCOM indicate a lack of cohesion. Specif-
ically, an LCOM of greater than 500 indicates a potential
problem.

We introduce a special subclass of RefType, named Met-
ricRefType, for recording the relevant definitions in .QL.
First, here is a predicate for testing that two methods are
distinct members of the same type:

predicate distinctMembers(Method m1,
Method m2) {

m1.getDeclaringType() = this and
m2.getDeclaringType() = this and
m1 != m2

}

Next, our task is to determine whether two methods access
a common field:

predicate shareField (Method m1, Method m2) {
exists (Field f |

m1.accesses(f) and
m1.getDeclaringType() = this and
m2.accesses(f) and
m2.getDeclaringType() = this)

}

Finally, we can compute the lack of cohesion metric it-
self. Its definition closely follows the description in English
above. In our view, this is one of the big advantages of .QL:

instead of having to make do with vague descriptions in nat-
ural language, a fully formal description can be given in .QL
— and that description is executable too. The definition of
Chidamber and Kemerer lack of cohesion is:

int getLackOfCohesionCK() {
exists (int n1, int n2, int n |
n1 = count(Method m1, Method m2 |

this . distinctMembers(m1,m2) and
not(this . shareField (m1,m2)))

and
n2 = count(Method m1, Method m2 |

this . distinctMembers(m1,m2) and
this . shareField (m1,m2))

and
n = (n1 − n2)/2
and
((n < 0 and result = 0) or (n >= 0 and result = n))

}

To use the above definition, we can use a simple se-
lect statement to find all types that have a lack of cohesion
greater than 500. In abcplus, 75 source types (out of 3974)
lack cohesion in this sense. Many of these are adapters for
analyses in Soot; it is not surprising that these are lack-
ing cohesion, since the data they access tends to be passed
as parameters. An interesting match is GlobalAspectInfo,
the data structure that stores all aspect-specific information
about an AspectJ program in abc. Indeed, it has many sep-
arate pieces of data, accessed by only a few methods each,
so one could argue this rather large class ought to be split
up because it represents many different abstractions.

Now one might object to the above definition, because
it treats static methods and instance methods on the same
footing. Suppose that we are given the above definition (via
the class MetricRefType); how can we adapt it to exclude
static methods? The solution is to simply write a new class
definition ourselves:

class MyMetricRefType extends MetricRefType {
predicate distinctMembers(Method m1,

Method m2) {
super.distinctMembers(m1,m2) and
not(m1.hasModifier(” static ”)) and
not(m2.hasModifier(” static ”))

}
}

from MyMetricRefType t, int loc
where loc = t .getLackOfCohesionCK() and loc > 500
select t , loc order by loc desc

This does not change the results for abcplus, however.

3.4.2. Henderson-Sellers

The intuition underlying the Henderson-Sellers method of
calculating Lack of Cohesion of Methods is that in a cohe-
sive class C, many methods access the same fields of C [13].
Formally, let

M = set of methods in class
F = set of fields in class

r(f) = number of methods that access field f

ar = mean of r(f) over f in F

We then define LCOM of the class under consideration to
be

LCOM = (ar − |M|)/(1 − |M|)

We follow Lance Walton [33] in restricting M to methods
that read some field in the same class, and F to fields that
are read by some method in the same class. An LCOM
value greater than 0.95 indicates a class that may deserve
some further scrutiny.

To code this metric in .QL, the first step is to define the
notion of a local field access:

predicate accessesLocalField (Method m, Field f) {
m.accesses(f) and
m.getDeclaringType() = this and
f . getDeclaringType () = this

}

As we are using Lance Walton’s convention, we then define
the notion of a method that makes an access, and a field
that’s being accessed:

Method getAccessingMethod() {
exists (Field f | this . accessesLocalField (result , f))

}
Field getAccessedField () {

exists (Method m | this . accessesLocalField (m,result))
}

It is then straightforward to translate the above semi-formal
definition to a .QL method:

float getLackOfCohesionHS() {
exists (int m, float ar |
m = count(this .getAccessingMethod()) and
ar = avg(Field f |

f = this . getAccessedField () |
count(Method x |

this . accessesLocalField (x, f))) and
m != 1 and
result = ((ar−m)/(1−m)))

}

In abcplus, there are 88 classes that lack cohesion in
this sense. An interesting question is whether those in-
clude many of the classes that were found wanting in co-
hesion by the Chidamber and Kemerer method. Indeed,
there are 15 such classes; and one of them is our old friend
GlobalAspectInfo, which we already acknowledged might
need splitting into multiple smaller classes. Several other
matches are also clearly not cohesive, for instance the Op-
tions class, which is just a collection point for all the options
one can pass to Soot, without any obvious relation between
the fields.

Again there are many variations one might wish to ex-
plore of this Henderson-Sellers metric. For instance, it
clearly penalises the use of accessor methods, and that is
arguably undesirable. It is easy to compensate for that, how-
ever, by overriding the accessesLocalField predicate:

class MyMetricRefType2 extends MetricRefType {
predicate accessesLocalField (Method m,

Field f) {
super. accessesLocalField (m,f)
or
exists (Method n |

m.getACall (). getCallee () = n and
n.getDeclaringType () = this and
super. accessesLocalField (n, f))

}
}

This captures any call to a method in the same class that
accesses a local field, not just accessor methods, leading to
higher cohesion results. It can be argued, however, that a
class that calls many of its own methods is more cohesive.

3.5. Specialisation Index

The specialisation index metric measures the extent to
which subclasses override (replace) the behaviour of their
ancestor classes. If they override many methods, it is an in-
dication that the original abstraction in the superclasses may
have been inappropriate. On the whole, subclasses should
add behaviour to their superclasses, but not alter that be-
haviour dramatically.

This metric was proposed by Mark Lorenz and Jeff Kidd
[21]. The idea is to weight each overridden method by the
depth in the inheritance hierarchy at which it occurs, and
then take the average over all methods in the type.

Formally, we compute the number of overridden meth-
ods in a class, multiply by the depth in the inheritance hier-
archy, and then divide by the total number of callables. It is
common (for instance in Frank Sauer’s Metrics 1.3.6 [28])
to exclude certain commonly overridden methods from the
calculation of the number of overridden methods, for in-
stance equals, toString and hashCode.

A specialisation index of greater than 5 is generally con-
sidered suspect and might warrant further investigation.

To code this metric in .QL, we first need to define the
inheritance depth of a type, that is the length of the longest
path from Object to this type in the inheritance hierarchy.
In the .QL code, we first compute the length of some path
to the root of the inheritance hierarchy, and then we take the
maximum over all those lengths to obtain the depth:

int getADepth() {
(this .hasQualifiedName(”java.lang”,”Object”)
and result=0)

or
(result = ((MetricRefType)this .

getASupertype ()).
getADepth() + 1)

}

int getInheritanceDepth () {
result = max(this.getADepth())

}

Note how the result of a getASupertype is cast to Metri-
cRefType, so that the getADepth method can be called on
it. To Java programmers, this may appear strange at first,
but remember that .QL classes are characterised by logi-
cal properties: casting to a type is just checking that the
value satisfies the property of being a MetricRefType. In
this example, since any RefType is also a MetricRefType,
that check will always succeed.

Next, to compute the specialisation index, we need to
specify the number of methods that are being overridden,
taking into account any exceptions. First, we define the ex-
ceptions as a method (which, in turn, can be overridden by
users of the metric to adapt it to their own codebase):

predicate ignoreOverride (Method c) {
c.hasName(”equals”) or
c.hasName(”hashCode”) or
c.hasName(”toString”) or
c.hasName(”finalize”) or
c.hasName(”clone”)

}

Next, we find the number of methods that are proper
overrides, in that the overridden method is not abstract, and
we count their number:

Method getOverrides () {
this .getAMethod() = result and
exists (Callable c |

result . overrides (c) and
not(c . hasModifier (”abstract”))) and

not(this . ignoreOverride (result))
}

int getNumberOverridden() {
result = count(this . getOverrides ())

}

Now we can pin down the definition of the specialisation
index itself:

float getSpecialisationIndex () {
this .getNumberOfCallables() != 0
and
result = (this .getNumberOverridden()

∗
this . getInheritanceDepth ())

/
this .getNumberOfCallables()

}

When run on abcplus, one of the classes with very high spe-
cialisation index is AdviceDecl c, which represents advice
declarations in AspectJ. Indeed, that started out as a sub-
class of MethodDecl c, but then many of its methods were
overridden as the design of the abc compiler evolved. It
is now a candidate for refactoring, taking away that depen-
dency on method declarations, because it doesn’t share a lot
of behaviour with its superclass.

It is interesting to experiment with variations, especially
in terms of the methods that are counted as overrides. Ar-
guably when method m overrides n, but calls n via a super
call, it is not altering the behaviour of its superclass, just
adding to it. From that point of view, such super-calling
methods m should be ignored when computing the number
of overridden methods. Indeed, in his Metrics 1.3.6 Eclipse
plugin [28], Frank Sauer offers precisely such an option. In
.QL, we just override the existing definition of the ignore-
Override predicate:

class MyMetricRefType extends MetricRefType {
predicate ignoreOverride (Method m) {

super. ignoreOverride (m) or
exists (Method n |

n = m.getACall() and m.overrides (n))
}

}

4. Related work

The idea to use a query language for source code analy-
sis is almost as old as the subject itself. Below we briefly
highlight what we regard as the main milestones in the de-
velopment of the idea. We then compare the design of .QL
more generally to other object-oriented query languages in
the database literature.

4.1. Code Queries

Mark Linton was the first to propose that a program be
stored in a database [19]. That system was named Omega;
it did not allow recursive queries. Furthermore, Linton al-
ready noted disappointing performance in his initial exper-
iments. Indeed, it appears many in the research community
believed that the approach would never be scalable [6], so
at best we could store only structural information about the
program. As the efficiency of SemmleCode shows, that be-
lief is now wrong, and the reason is two-fold. First, database
optimisers have had many advances since the early eighties,
and SemmleCode leverages those advances by compiling
.QL to SQL. Furthermore, SemmleCode itself applies many
optimisations in that compilation process. Yet it is evident
we have only scratched the surface in that respect, and a
huge number of further optimisations are possible.

In a separate development, many researchers have inves-
tigated the use of logic query languages for querying code,
starting with the XL C++ Browser [15]. A modern variant
of that idea is JQuery [14, 25], which is also nicely inte-
grated with Eclipse. The use of Prolog has some serious
drawbacks, however: in particular, termination of queries is
hard to predict.

Based on that observation, we previously proposed the
use of Datalog as a code query language [12]. Datalog is
a very restricted logic programming language, essentially
Prolog without data structures. In that earlier paper, we
demonstrated excellent performance, but arguably Datalog
is too Spartan a notation for writing queries, and it certainly
does not lend itself to the creation of libraries of queries,
which we regard as crucial.

A more comprehensive account of related work on code
queries can be found in [12]. An excellent, in-depth account
of many of the important issues in the field can be found in
the PhD dissertation of Michael Eichberg [10].

4.2. Object-oriented Query Languages

Naturally we are not alone in observing that Datalog
ought to be augmented with facilities for the creation of
query libraries before it can be applied on an industrial
scale. The difficulties were, however, well summarised in
Jeff Ullman’s landmark paper [31], where he stated:

It is not possible for a query language to be seri-
ously logical and seriously object-oriented at the
same time.

History appears to have confirmed this statement. While a
number of theoretical papers were written on the subject,
the combination of object-orientation and Datalog never
made it to the mainstream. As we claim .QL to be a truly
object-oriented language with a proper logical foundation,

we need to examine Ullman’s arguments, and understand
how they are side-stepped in the design of .QL.

The first argument put forward by Ullman concerns ob-
ject identity: in his view of object-orientation, it is an es-
sential feature that each object is given a unique identity
upon creation. In particular, if a tuple is generated in mul-
tiple ways, it gets a new identity for each creation. Ullman
then convincingly demonstrates this idea does not combine
well with the least-fixpoint semantics of Datalog. The ob-
ject identity problem does not arise in .QL, because there is
no object identity: classes are just logical properties.

Ullman’s second argument concerns the idea that each
object has precisely one type. Clearly in a database setting
this does not make sense, as it is likely that we need many
overlapping types. Again, such overlaps occur naturally in
.QL, because classes are predicates, and multiple predicates
can be true of the same object. Furthermore, when writing
little queries, it’s essential that new types can be easily in-
troduced on the fly, and in .QL you can indeed write little
classes as part of a query.

Ullman’s final argument (actually phrased as an open
problem) is to point out that overlapping types can poten-
tially lead to huge performance problems. This has been
solved in the .QL implementation via a number of propri-
etary optimisations. A full exposition of these optimisations
is beyond the scope of the present paper.

It appears that much of the literature after Ullman’s pa-
per has concentrated on overcoming his first objection: ob-
ject identity plays a dominant role in the research on object-
oriented deductive databases after 1991. We regard that as
a mistake, as the convenience of writing simple declarative
queries is the raison d’être for a query language; it is not
object-identity that is essential, but the ability to build li-
braries of reusable queries. Indeed, .QL is partly the result
of attempting to follow the path mapped out by Ullman, but
focussing on the open problem he identified rather than at-
tempting to retrofit object-identity on Datalog.

One notable exception is a paper by Serge Abiteboul et
al. [2], which proposes (as an afterthought to the main body
of the paper) a notion of virtual class that is quite close to
the normal classes of .QL. However, the precise definition
of virtual method dispatch is quite different there: instead
of considering all candidates below the root definitions, it
takes all candidates below the ‘closest match’. Also mul-
tiple inheritance is not permitted; in .QL, multiple inher-
itance just means conjunction of characteristic predicates.
Furthermore, the authors remark, again, that novel optimi-
sations are needed to make the approach feasible, but none
are offered.

Abiteboul went on to build on these ideas in his de-
sign of IQL(2) [1]. However, there the inheritance hier-
archy is tied to a notion of record subtyping; again this
is far more complex than the choice taken in .QL, where

inheritance is simply logical implication. The semantics
of overriding are left implicit in [1]. An interesting fea-
ture of IQL(2), which is not present in .QL, is the use of
parameterised classes, for instance to distinguish between
locations: the class Friends(LA) defines a phone attribute,
whereas Friends(Paris) has a téléphone attribute. In .QL,
there would have to be a single class Friends with a sub-
class for each location.

Other works that also build on Abiteboul et al.’s 1991
paper, however, ignore the notion of virtual classes, in-
stead again focusing on object identity, and assigning a sin-
gle type to each object, for instance [3]. In such complex
semantics multiple inheritance is difficult to account for,
while in .QL it is very simple indeed.

In more recent proposals to arrive at a synergy between
objects and deductive databases, like Mengchi Liu’s ROL
language [20], the simplicity of Datalog is sacrificed by
bringing in complex terms, and even set-valued results, thus
foregoing the advantages of the very simple fixpoint seman-
tics of Datalog (which in turn enable many optimisations).

5. Conclusions

We have presented .QL, an object-oriented query lan-
guage, and demonstrated its suitability for source code anal-
ysis, in particular focusing on metrics. .QL is unique in its
simple object model, where classes are just logical proper-
ties and inheritance is implication. Furthermore, its nota-
tion for aggregate computations, which we borrowed from
the program derivation community, provides a simple way
of expressing operations that would be awkward in SQL.

There are many other potential application areas to be
considered. For now, SemmleCode does not store control
flow information, and therefore it is not yet possible to ex-
press analyses like those proposed by Reps [27] and Wha-
ley [18, 34]. It would be interesting to see whether such
typical program analysis applications also benefit by the
object-oriented nature of .QL. We conjecture that there too,
it will be beneficial to define generic analyses that are sub-
sequently specialised by subclassing.

Another application area concerns the discovery of
crosscutting concerns, as advocated by Marin, Van Deursen
and Moonen in [22]. Indeed, the same authors have recently
proposed a query-based tool for such tasks named SoQueT
[23], and it would be interesting to examine whether .QL
can be used for the same purpose.

Finally, we would like to stress once again that noth-
ing in the design of .QL is specific to the application of
source code analysis. Given an annotated database schema,
one can build a library for common tasks just like the one
sketched here for source code analysis. The details of the
database schema used for querying Java in Eclipse can be
found on our website [29].

References

[1] S. Abiteboul and C. S. dos Santos. IQL(2): A model with
ubiquitous objects. In P. Atzeni and V. Tannen, editors,
Database Programming Languages (DBPL-5), Electronic
Workshops in Computing. Springer, 1995.

[2] S. Abiteboul, G. Lausen, H. Uphoff, and E. Waller. Methods
and rules. In Proceedings of SIGMOD 1993, pages 32–41,
1993.

[3] F. N. Afrati. On inheritance in object oriented datalog.
In International Workshop on Issues and Applications of
Database Technology (IADT), pages 280–289, 1998.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. abc: An extensible AspectJ compiler.
In Proceedings of AOSD, pages 87–98. ACM Press, 2005.

[5] V. Basili, L. Brand, and W. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans-
actions on Software Engineering, 22(10):751–760, 1996.

[6] Y. Chen, M. Nishimoto, and C. V. Ramamoorthy. The C
information abstraction system. IEEE Transactions on Soft-
ware Engineering, 16(3):325–334, 1990.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software En-
gineering, 20(6):476–493, 1994.

[8] D. P. Darcy, S. A. Slaughter, C. F. Kemerer, and J. E.
Tomayko. The structural complexity of software: an exper-
imental test. IEEE Transactions on Software Engineering,
31(11):982–995, 2005.

[9] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and
Program Semantics. Texts and Monographs in Computer
Science. Springer Verlag, 1990.

[10] M. Eichberg. Open Integrated Development and Anal-
ysis Environments. PhD thesis, Technische Universität
Darmstadt, 2007. http://elib.tu-darmstadt.
de/diss/000808/.

[11] H. Gallaire and J. Minker. Logic and Databases. Plenum
Press, New York, 1978.

[12] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: scal-
able source code queries with Datalog. In D. Thomas, edi-
tor, Proceedings of ECOOP, volume 4067 of Lecture Notes
in Computer Science, pages 2–27. Springer, 2006.

[13] B. Henderson-Sellers. Object-Oriented Metrics: Measures
of Complexity. Prentice-Hall, 1996.

[14] D. Janzen and K. de Volder. Navigating and querying
code without getting lost. In 2nd International Conference
on Aspect-Oriented Software Development, pages 178–187,
2003.

[15] S. Javey, K. Mitsui, H. Nakamura, T. Ohira, K. Yasuda,
K. Kuse, T. Kamimura, and R. Helm. Architecture of the
XL C++ browser. In CASCON ’92: Proceedings of the 1992
conference of the Centre for Advanced Studies on Collabo-
rative research, pages 369–379. IBM Press, 1992.

[16] A. Kaldewaij. The Derivation of Algorithms. Prentice Hall,
1990.

[17] J. Lakos. Large-Scale C++ Software Design. Addison Wes-
ley, 1996.

[18] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin,
D. Avots, M. Carbin, and C. Unkel. Context-sensitive pro-
gram analysis as database queries. In Proceedings of PODS,
pages 1–12. ACM Press, 2005.

[19] M. A. Linton. Implementing relational views of programs.
In P. B. Henderson, editor, Software Development Environ-
ments (SDE), pages 132–140, 1984.

[20] M. Liu, G. Dobbie, and T. W. Ling. A logical foundation for
deductive object-oriented databases. ACM Transactions on
Database Systems, 27(1):117–151, 2002.

[21] M. Lorenz and J. Kidd. Object-oriented Software Metrics.
Prentice Hall, 1994.

[22] M. Marin, A. Van Deursen, and L. Moonen. Identifying
crosscutting concerns using fan-in analysis. ACM Transac-
tions on Software Engineering and Methodology, page To
appear, 2007.

[23] M. Marin, A. Van Deursen, and L. Moonen. SoQueT:
Query-based documentation of crosscutting concerns. In
29th International Conference on Software Engineering
(ICSE 2007), pages 758–761, 2007.

[24] R. C. Martin. Agile Software Development, Principles, Pat-
terns and Practices. Prentice Hall, 2002.

[25] E. McCormick and K. D. Volder. JQuery: finding your way
through tangled code. In Companion to OOPSLA, pages 9–
10. ACM Press, 2004.

[26] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An extensible compiler framework for Java. In 12th In-
ternational Conference on Compiler Construction, volume
2622 of Lecture Notes in Computer Science, pages 138–152,
2003.

[27] T. W. Reps. Demand interprocedural program analysis using
logic databases. In R. Ramakrishnan, editor, Applications of
Logic Databases, volume 296 of International Series in En-
gineering and Computer Science, pages 163–196. Kluwer,
1995.

[28] F. Sauer. Eclipse metrics 1.3.6. http://metrics.
sourceforge.net, 2006.

[29] Semmle Ltd. Company website with free downloads, doc-
umentation, and discussion forums. http://semmle.
com, 2007.

[30] D. D. Spinellis. Code Quality: the Open Source Perspective.
Addison-Wesley, 2007.

[31] J. D. Ullman. A comparison between deductive and object-
oriented database systems. In 2nd International Conference
on Deductive and Object-Oriented Databases, Springer
Lecture Notes in Computer Science, pages 263–277, 1991.

[32] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Compiler Construc-
tion, 9th International Conference (CC 2000), pages 18–34,
2000.

[33] L. Walton. Eclipse metrics plugin — State of Flow. http:
//eclipse-metrics.sourceforge.net/, 2006.

[34] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using dat-
alog and binary decision diagrams for program analysis. In
K. Yi, editor, Proceedings of APLAS, volume 3780 of Lec-
ture Notes in Computer Science, pages 97–118. Springer,
2005.

